Перевод: со всех языков на английский

с английского на все языки

metals industry

  • 1 Leichtmetallindustrie

    Leichtmetallindustrie f IND light metals industry, (BE) aluminium industry, (AE) aluminum industry
    * * *
    f < Ind> light metals industry, aluminium industry (BE), aluminum industry (AE)
    * * *
    Leichtmetallindustrie
    light-metals industry

    Business german-english dictionary > Leichtmetallindustrie

  • 2 цветная металлургия

    Универсальный русско-английский словарь > цветная металлургия

  • 3 металлообрабатывающая промышленность

    Универсальный русско-английский словарь > металлообрабатывающая промышленность

  • 4 Leichtmetallindustrie

    f light metals industry
    * * *
    Leichtmetallindustrie f light metals industry

    Deutsch-Englisch Wörterbuch > Leichtmetallindustrie

  • 5 КИС в цветной металлургии

    1. comprehensive use of raw materials in non-ferrous metals industry

     

    КИС в цветной металлургии
    Переработка руд цв. и редких металлов с наиб. полным извлеч. всех ценных составляющих. Выход отходов при добыче этих руд — до 80 %, при обогащении — до 10 %. Токсичные вещ-ва в них представлены соединениями As, S, Sb, Se, Те и др. эл-тов, в том числе металлами: Hg, Pb, Cd, Zn и др. Все руды — комплексные, но классифиц. как более простое рудное сырье: медные, никелевые и т.д. Так, в Сu-сырье содержится до 30 эл-тов, имеющих потребительскую ценность, хотя извлекается < 20, к-рые выделяются в медный, цинковый, пиритный, молибденовый, магнетитовый, свинцовый и баритовый концентраты. Осн. потери в стоимостном выражении приходятся на благородные металлы и серу. РЬ—Zn-руды, включая Сu— Pb-Zn, Cu-Pb-Bi и др. сложное сырье, являются источником для извлеч. > 20 эл-тов и выпуска > 40 видов товарной продукции. На фабриках кроме осн. концентратов получают медный, пиритный, баритовый, оловянный концентраты и золотосодержащий продукт. Оловянные руды содержат W, Си, Pb, Zn, Bi, In, Cd и др. металлы. Они отличаются не только сложностью веществ, состава, но и сложной структурой: тонкой вкрапленностью касситерита и прорастанием минералов W, Sn и др. Руды редких металлов представлены W-, W-Mo-, Ti-Zr-разностями. Обычно это сырье сложного состава, содержащее наряду с осн. металлами сопутств. эл-ты. Аl-сырье (бокситы и нефелины) содержат в промышл. кол-вах Fe, Ti, V, Ga, Sc и др. На предприятиях ЦМ производят серную к-ту, соду, поташ, минер. удобрения, строит. и др. материалы. Повышение комплексности переработки сырья на ее предприятиях остается важнейшей нар.-хоз. задачей.
    Перечень направлений повышения КИС в ЦМ весьма широк. Он охватывает геологию, горное, обогатительное и металлургич. произ-во, обработку металлов, произ-во чистых металлов, полупроводниковых материалов, получ. сплавов, охрану природы и экономику. Их выполнение требует не только улучшения и совершенств. примен. приемов и оборудования, но и принцип. новых технич. решений от добычи до металлургич. переработки. Для снижения загрязнения окруж. среды необх. создание малоотходных и безотходных произ-в, очистки металлургич. газов от вредных примесей, в первую очередь от S02 в малых концентрациях, фторидов, СО, бензопиренов и диоксинов и др. вредных вещ-в, нужна технология очистки рудничных и сточных вод не только от ионов тяж. металлов, но и от иголочных металлов и анионов.
    [ http://metaltrade.ru/abc/a.htm]

    Тематики

    EN

    Русско-английский словарь нормативно-технической терминологии > КИС в цветной металлургии

  • 6 цветная металлургия

    1. non-ferrous metals industry
    2. non-ferrous metallurgy

     

    цветная металлургия
    Отрасль тяжелой пром-ти, включающая добычу и обогащение руд, произ-во и обработку цв. металлов и их сплавов. Структурно ЦМ включает 16 подотраслей: алюминиевую, никель-кобальтовую, медную, свинцово-цинковую, оловянную, редкометалльную, вольфрамо-молибденовую, титано-магниевую, сурьмяную, плавикошпатовую, электродную, твердосплавную, по обработке цв. металлов, спец., полупроводниковую и вторичную металлургию.
    [ http://metaltrade.ru/abc/a.htm]

    Тематики

    EN

    Русско-английский словарь нормативно-технической терминологии > цветная металлургия

  • 7 металлургическая промышленность

    Универсальный русско-английский словарь > металлургическая промышленность

  • 8 металлургическая отрасль

    1) General subject: smelting sector (АД)
    2) Economy: metallurgical industry (т.е. металлургическая промышленность)

    Универсальный русско-английский словарь > металлургическая отрасль

  • 9 металлургия

    Универсальный русско-английский словарь > металлургия

  • 10 hutnictwo

    - wa; loc sg - wie; nt
    ( przemysł) steel industry
    * * *
    n.
    metallurgical industry; ( stali) steel industry; hutnictwo metali nieżelaznych nonferrous metals industry.

    The New English-Polish, Polish-English Kościuszko foundation dictionary > hutnictwo

  • 11 branża

    -y; -e; f
    line, trade
    * * *
    f.
    ekon. (branch of) industry, (line of) business; branża elektroniczna/metalowa electronics/metals industry.

    The New English-Polish, Polish-English Kościuszko foundation dictionary > branża

  • 12 Leichtfertigkeit

    Leichtfertigkeit
    hazardous negligence;
    Leichtflugzeug light plane (aircraft), grasshopper, cub;
    Leichtgut light cargo (goods, freight);
    Leichtindustrie light industries;
    Leichtlastwagen pickup truck (US);
    Leichtmatrose ordinary seaman (sailor);
    Leichtmetallindustrie light-metals industry;
    Leichtöl light oil.

    Business german-english dictionary > Leichtfertigkeit

  • 13 цветная металлургия

    nonferrous-metals industry, non-ferrous metallurgy

    Русско-Английский новый экономический словарь > цветная металлургия

  • 14 Deville, Henri Etienne Sainte-Claire

    SUBJECT AREA: Metallurgy
    [br]
    b. 11 March 1818 St Thomas, Virgin Islands
    d. 1 July 1881 Boulogne-sur-Seine, France
    [br]
    French chemist and metallurgist, pioneer in the large-scale production of aluminium and other light metals.
    [br]
    Deville was the son of a prosperous shipowner with diplomatic duties in the Virgin Islands. With his elder brother Charles, who later became a distinguished physicist, he was sent to Paris to be educated. He took his degree in medicine in 1843, but before that he had shown an interest in chemistry, due particularly to the lectures of Thenard. Two years later, with Thenard's influence, he was appointed Professor of Chemistry at Besançon. In 1851 he was able to return to Paris as Professor at the Ecole Normale Supérieure. He remained there for the rest of his working life, greatly improving the standard of teaching, and his laboratory became one of the great research centres of Europe. His first chemical work had been in organic chemistry, but he then turned to inorganic chemistry, specifically to improve methods of producing the new and little-known metal aluminium. Essentially, the process consisted of forming sodium aluminium trichloride and reducing it with sodium to metallic aluminium. He obtained sodium in sufficient quantity by reducing sodium carbonate with carbon. In 1855 he exhibited specimens of the metal at the Paris Exhibition, and the same year Napoleon III asked to see them, with a view to using it for breastplates for the Army and for spoons and forks for State banquets. With the resulting government support, he set up a pilot plant at Jarvel to develop the process, and then set up a small company, the Société d'Aluminium at Nan terre. This raised the output of this attractive and useful metal, so it could be used more widely than for the jewellery to which it had hitherto been restricted. Large-scale applications, however, had to await the electrolytic process that began to supersede Deville's in the 1890s. Deville extended his sodium reduction method to produce silicon, boron and the light metals magnesium and titanium. His investigations into the metallurgy of platinum revolutionized the industry and led in 1872 to his being asked to make the platinum-iridium (90–10) alloy for the standard kilogram and metre. Deville later carried out important work in high-temperature chemistry. He grieved much at the death of his brother Charles in 1876, and his retirement was forced by declining health in 1880; he did not survive for long.
    [br]
    Bibliography
    Deville published influential books on aluminium and platinum; these and all his publications are listed in the bibliography in the standard biography by J.Gray, 1889, Henri Sainte-Claire Deville: sa vie et ses travaux, Paris.
    Further Reading
    M.Daumas, 1949, "Henri Sainte-Claire Deville et les débuts de l'industrie de l'aluminium", Rev.Hist.Sci 2:352–7.
    J.C.Chaston, 1981, "Henri Sainte-Claire Deville: his outstanding contributions to the chemistry of the platinum metals", Platinum Metals Review 25:121–8.
    LRD

    Biographical history of technology > Deville, Henri Etienne Sainte-Claire

  • 15 Morrison, William Murray

    [br]
    b. 7 October 1873 Birchwood, Inverness-shire, Scotland
    d. 21 May 1948 London, England
    [br]
    Scottish pioneer in the development of the British aluminium industry and Highlands hydroelectric energy.
    [br]
    After studying at the West of Scotland Technical College in Glasgow, in January 1895 Morrison was appointed Engineer to the newly formed British Aluminium Company Limited (BAC); it was with this organization that he spent his entire career. The company secured the patent rights to the Héroult and Bayer processes. It constructed a 200 tonne per year electrolytic plant at Foyers on the shore of Loch Ness, together with an adjacent 5000 kW hydroelectric scheme, and it built an alumina factory at Larne Harbour in north-eastern Ireland. Morrison was soon Manager at Foyers, and he became the company's Joint Technical Adviser. In 1910 he was made General Manager, and later he was appointed Managing Director. Morrison successfully brought about improvements in all parts of the production process; between 1915 and 1930 he increased the size of individual electrolytic cells by a factor of five, from 8,000 to 40,000 amperes. Soon after 1901, BAC built a second works for electrolytic reduction, at Kinlochleven in Argyllshire, where the primary design originated from Morrison. In the 1920s a third plant was erected at Fort William, in the lee of Ben Nevis, with hydroelectric generators providing some 75 MW. Alumina factories were constructed at Burntisland on the Firth of Forth and, in the 1930s, at Newport in Monmouthshire. Rolling mills were developed at Milton in Staffordshire, Warrington, and Falkirk in Stirlingshire, this last coming into use in the 1940s, by which time the company had a primary-metal output of more than 30,000 tonnes a year. Morrison was closely involved in all of these developments. He retired in 1946 as Deputy Chairman of BAC.
    [br]
    Principal Honours and Distinctions
    Commander of the Order of St Olav of Norway 1933 (BAC had manufacturing interests in Norway). Knighted 1943. Vice-Chairman, British Non-Ferrous Metals Research Association, Faraday Society, Institute of Metals. Institute of Metals Platinum Medal 1942.
    Bibliography
    1939, "Aluminium and highland water power", Journal of the Institute of Metals 65:17– 36 (seventeenth autumn lecture),
    JKA

    Biographical history of technology > Morrison, William Murray

  • 16 metaal

    I het
    [scheikunde] metal
    voorbeelden:
    1   edele/onedele/halfedele metalen precious/base/semi-precious metals
         oud metaal scrap metal
         zware/lichte metalen heavy/light metals
         geheel van metaal all-metal
    II 〈de〉
    [metaalnijverheid] metal industrymet betrekking tot staal steel industry
    voorbeelden:
    1   arbeider in de metaal metalworker; steelworker

    Van Dale Handwoordenboek Nederlands-Engels > metaal

  • 17 чёрная металлургия

    Универсальный русско-английский словарь > чёрная металлургия

  • 18 Boulsover, Thomas

    [br]
    b. 1704
    d. 1788
    [br]
    English cutler, metalworker and inventor of Sheffield plate.
    [br]
    Boulsover, originally a small-scale manufacturer of cutlery, is believed to have specialized in making knife-handle components. About 1742 he found that a thin sheet of silver could be fused to copper sheet by rolling or beating to flatten it. Thus he developed the plating of silver, later called Sheffield plate.
    The method when perfected consisted of copper sheet overlaid by thin sheet silver being annealed by red heat. Protected by iron sheeting, the copper and silver were rolled together, becoming fused to a single plate capable of undergoing further manufacturing processes. Later developments included methods of edging the fused sheets and the placing of silver sheet on both lower and upper surfaces of copper, to produce high-quality silver plate, in much demand by the latter part of the century. Boulsover himself is said to have produced only small articles such as buttons and snuff boxes from this material, which by 1758 was being exploited more commercially by Joseph Hancock in Sheffield making candlesticks, hot-water pots and coffee pots. Matthew Boulton introduced its manufacture in very high-quality products during the 1760s to Birmingham, where the technique was widely adopted later. By the 1770s Boulsover was engaged in rolling his plated copper for industry elsewhere, also trading in iron and purchasing blister steel which he converted by the Huntsman process to crucible steel. Blister steel was converted on his behalf to shear steel by forging. He is thought to have also been responsible for improving this product further, introducing "double-shear steel", by repeating the forging and faggoting of shear steel bars. Thomas Boulsover had become a Sheffield entrepreneur, well known for his numerous skills with metals.
    [br]
    Further Reading
    H.W.Dickinson, 1937, Matthew Boulton, Cambridge: Cambridge University Press (describes Boulsover's innovation and further development of Sheffield plate).
    J.Holland, 1834, Manufactures in Metal III, 354–8.
    For activities in steel see: K.C.Barraclough, 1991, "Steel in the Industrial Revolution", in J.Day and R.F.Tylecote (eds), The Industrial Revolution in Metals, The Institute of Metals.
    JD

    Biographical history of technology > Boulsover, Thomas

  • 19 Junghans, Siegfried

    SUBJECT AREA: Metallurgy
    [br]
    b. 1887
    d. 1954
    [br]
    German pioneer of the continuous casting of metals.
    [br]
    Junghans was of the family that owned Gebrüder Junghans, one of the largest firms in the German watch-and clockmaking industry. From 1906 to 1918 he served in the German Army, after which he took a course in metallurgy and analytical chemistry at the Technical High School in Stuttgart. Junghans was then given control of the brassworks owned by his family. He wanted to make castings simply and cheaply, but he found that he lacked the normal foundry equipment. By 1927, formulating his ideas on continuous casting, he had conceived a way of overcoming this deficiency and began experiments. By the time the firm was taken over by Wieland-Werke AG in 1931, Junghans had achieved positive results. A test plant was erected in 1932, and commercial production of continuously cast metal followed the year after. Wieland told Junghans that a brassfounder who had come up through the trade would never have hit on the idea: it took an outsider like Junghans to do it. He was made Technical Director of Wielands but left in 1935 to work privately on the development of continuous casting for all metals. He was able to license the process for non-ferrous metals during 1936–9 in Germany and other countries, but the Second World War interrupted his work; however, the German government supported him and a production plant was built. In 1948 he was able to resume work on the continuous casting of steel, which he had been considering since 1936. He pushed on in spite of financial difficulties and produced the first steel by this process at Schorndorf in March 1949. From 1950 he made agreements with four firms to work towards the pilot plant stage, and this was achieved in 1954 at Mannesmann's Huckingen works. The aim of continuous casting is to bypass the conventional processes of casting molten steel into ingots, reheating the ingots and shaping them by rolling them in a large mill. Essentially, in continuous casting, molten steel is drawn through the bottom of a ladle and down through a water-cooled copper mould. The unique feature of Junghans's process was the vertically reciprocating mould, which prevented the molten metal sticking as it passed through. A continuous length of steel is taken off and cooled until it is completely solidified into the required shape. The idea of continuous casting can be traced back to Bessemer, and although others tried to apply it later, they did not have any success. It was Junghans who, more than anybody, made the process a reality.
    [br]
    Further Reading
    K.Sperth and A.Bungeroth, 1953, "The Junghans method of continuous casting of steel", Metal Treatment and Drop Forging, Mayn.
    J.Jewkes et al., 1969, The Sources of Invention, 2nd edn, London: Macmillan, pp. 287 ff.
    LRD

    Biographical history of technology > Junghans, Siegfried

  • 20 przemysł hutniczy

    • iron and steel industry
    • metal producing industry
    • metal-forming industry
    • metals producing industry

    Słownik polsko-angielski dla inżynierów > przemysł hutniczy

См. также в других словарях:

  • Metals Treatment Technologies — (MT2) Type Private, LLC Industry Environmental Services, Firing Range Solutions Founded Aug. 4, 2000 …   Wikipedia

  • Metals-banka — a.d. Novi Sad Type Public (BELEX: MTBN) Industry Finance and Insurance Founded 1990 …   Wikipedia

  • Industry of the People's Republic of China — Industry produced 53.7 percent of the People s Republic of China’s gross domestic product (GDP) in 2005. Industry (including mining, manufacturing, construction, and power) contributed 46.8 percent of GDP in 2010 and occupied 27 percent of the… …   Wikipedia

  • Industry of China — Industry produced 53.1 percent of China’s gross domestic product (GDP) in 2005. Industry (including mining, manufacturing, construction, and power) contributed 52.9 percent of GDP in 2004 and occupied 22.5 percent of the workforce. The… …   Wikipedia

  • non-ferrous metallurgy (science), non-ferrous metals industry (industry) — Смотри цветная металлургия …   Энциклопедический словарь по металлургии

  • comprehensive use of raw materials in non-ferrous metals industry — Смотри КИС в цветной металлургии …   Энциклопедический словарь по металлургии

  • METALS AND MINING — In the Bible Six metals are mentioned in the Bible and in many passages they are listed in the same order: gold, silver, copper, iron, tin, and lead. Antimony is also mentioned. The metals are referred to in various contexts, including methods of …   Encyclopedia of Judaism

  • Industry of Romania — Romania has been very successful in developing dynamic telecommunications, industrial robots, aerospace, and weapons sectors. Industry and construction accounted for 32% of gross domestic product (GDP) in 2003, a comparatively large share even… …   Wikipedia

  • Industry —    Russia’s industrial infrastructure is dominated by the country’s Stalinist experiment in rapid industrialization. During the 1930s, the Communist Party of the Soviet Union (CPSU) transformed the Union of Soviet Socialist Republics (USSR) from… …   Historical Dictionary of the Russian Federation

  • Business and Industry Review — ▪ 1999 Introduction Overview        Annual Average Rates of Growth of Manufacturing Output, 1980 97, Table Pattern of Output, 1994 97, Table Index Numbers of Production, Employment, and Productivity in Manufacturing Industries, Table (For Annual… …   Universalium

  • Minor Metals Trade Association — The Minor Metals Trade Association (MMTA) is a world wide industry association whose members are involved in over 35 metals that are not traded on exchanges. The MMTA membership includes 120 companies from 30 different countries that trade in… …   Wikipedia

Поделиться ссылкой на выделенное

Прямая ссылка:
Нажмите правой клавишей мыши и выберите «Копировать ссылку»